量子コンピュータに最適な量子演算シーケンスをシステマティックに見つける手法を開発

この記事は約6分で読めます。
 NICT(エヌアイシーティー)は、慶應義塾大学、東京理科大学、東京大学と共同で、量子コンピュータに最適な量子演算シーケンスをシステマティックに見つける手法の開発に初めて成功しました。今回開発したのは、最適制御理論(GRAPEアルゴリズム)を応用し、考えられる全ての量子演算シーケンスの中から、理論的に最適なものを特定するシステマティックな手法です。
【ポイント】
■量子コンピュータに最適な量子演算シーケンスを見つける新しい手法を開発
■新手法はGRAPEに基づき、量子演算シーケンスをシステマティックに見つけ、タスクの効率的な実行が可能に
■量子コンピュータのパフォーマンス向上や環境負荷低減への貢献に期待

 国立研究開発法人情報通信研究機構(NICT(エヌアイシーティー)、理事長: 徳田 英幸)は、慶應義塾大学(塾長: 伊藤 公平)、東京理科大学(学長: 石川 正俊)、東京大学(総長: 藤井 輝夫)と共同で、量子コンピュータに最適な量子演算シーケンスをシステマティックに見つける手法の開発に初めて成功しました。
 量子コンピュータがタスクを実行するためには、量子演算シーケンスを書く必要がありますが、今まではコンピュータの操作者が既存の方法(レシピ)に基づいて独自のやり方で、最適だと思われる量子演算シーケンスを書いていました。今回開発したのは、最適制御理論(GRAPEアルゴリズム)を応用し、考えられる全ての量子演算シーケンスの中から、理論的に最適なものを特定するシステマティックな手法です。
 この手法は、数十量子ビットを含む中規模の量子コンピュータの有用なツールになると期待され、近い将来、量子コンピュータのパフォーマンスの向上や環境負荷低減への貢献が期待されます。
 本成果は、2022年8月23日(火)に、米国の科学雑誌「Physical Review A」に掲載されました。

【背景】
 現在、開発途上の量子コンピュータは、社会に大きな影響を与えることが期待されています。エネルギー的側面からの環境負荷低減への貢献や、応用先として医療用の新しい化学物質や、よりクリーンな環境のための材料探索の加速などが挙げられます。
 量子コンピュータにとって大きな問題の一つに、量子状態はノイズに非常に敏感なので、安定して長時間維持すること(コヒーレントな量子状態を維持すること)が難しいことが挙げられます。最高のパフォーマンスを得るには、コヒーレントな量子状態を維持できる時間内で演算を進める必要がありますが、演算の指示書に相当する“量子演算シーケンス”は操作者がレシピに基づいて“手動”で行っており、最適なシーケンスをシステマティックに特定する手法が求められていました。

【今回の成果】

図1 量子演算シーケンス(概念図) 水平方向の6本の青線は6つの量子ビットを表し、左側が入力、右側が出力を表す。赤い四角は1量子ビット演算、2本の青線をつなぐ緑の縦の線分は2量子ビット演算を表す。最適な量子演算シーケンスは、最も少ない操作数で実現される。図1 量子演算シーケンス(概念図) 水平方向の6本の青線は6つの量子ビットを表し、左側が入力、右側が出力を表す。赤い四角は1量子ビット演算、2本の青線をつなぐ緑の縦の線分は2量子ビット演算を表す。最適な量子演算シーケンスは、最も少ない操作数で実現される。

 本研究チームは、最適な量子演算シーケンスを特定するシステマティックな手法を開発しました。

 コンピュータが情報を保存及び処理する際、全ての情報は0又は1の値を持つビットの文字列に変換されます。人間が理解できる言語で記述されたコンピュータプログラムを、量子コンピュータが情報処理できるように変換したものが量子演算シーケンスです(図1参照)。量子演算シーケンスは、1量子ビット演算と2量子ビット演算から成り立ちますが、最も少ない操作数(赤い四角の数、緑の縦線の数が最少)で、高いパフォーマンスを発揮するシーケンスが最適なシーケンスです。

図2  4個の量子ビット状態を準備する場合に達成できる最大忠実度F Nは状態準備に使う2量子ビット演算ゲート数(図1の緑の縦の線分)、Fは忠実度(1未満だと目的状態の生成は不完全)、nは量子ビット数を表す。図2 4個の量子ビット状態を準備する場合に達成できる最大忠実度F Nは状態準備に使う2量子ビット演算ゲート数(図1の緑の縦の線分)、Fは忠実度(1未満だと目的状態の生成は不完全)、nは量子ビット数を表す。

 新しい手法は、数値最適制御理論アルゴリズムであるGRAPEと呼ばれる計算アルゴリズムを使用して、基本的な量子演算の全ての可能なシーケンスを分析するものです。具体的には、各量子演算シーケンスとパフォーマンス指標(忠実度F)の表を作成するのですが、量子ビットの数と調査対象の操作の数に応じて、数千から数百万の範囲の中から、蓄積されたデータに基づいて、最適な量子演算シーケンスがシステマティックに特定されます。図2は量子演算シーケンスとそのパフォーマンス指標の関係を表す図であり、量子ビットnが4個の場合、2量子ビット演算ゲート数Nが5個以上必要ということが分かります。

 また、新しい手法では全ての量子演算シーケンスの完全なリストを分析し、従来のレシピを評価することも可能となるため、少数量子ビット量子アルゴリズムのパフォーマンスに関する過去及び将来の研究のベンチマークを確立するための貴重なツールを提供できます。

【今後の展望】

図3 量子コンピュータパフォーマンスの改善(概念図) 量子コンピュータのコヒーレンスは時間の経過と共に低下する。 コヒーレンスが低くなり過ぎると、量子コンピュータの情報が無意味になる。図3 量子コンピュータパフォーマンスの改善(概念図) 量子コンピュータのコヒーレンスは時間の経過と共に低下する。 コヒーレンスが低くなり過ぎると、量子コンピュータの情報が無意味になる。 本研究によって開発に成功した、量子コンピュータに最適な量子演算シーケンスを見つけるシステマティックな手法は、有用なツールとして中規模の量子コンピュータに適応可能であるため、近い将来、量子コンピュータのパフォーマンスの向上(図3参照)や環境負荷低減への貢献が期待されます。

 今回、ある特定の量子タスクについて多数の最適な量子演算シーケンスが存在することが明らかになりました。本結果は、確率論的アプローチにより、本手法をより多くの量子ビットを用いた大規模で複雑な量子タスクに拡張し、最適な量子演算シーケンスを発見できる可能性が高いことを示唆しています。さらには、大量のデータセットの分析に基づくアプローチでは、私たちの新しい手法を機械学習と統合することで予測能力を更に強化できる可能性も示唆しています。今後、本研究チームは、今回得られた成果を実際の量子アルゴリズムから取得したタスクの最適化に応用していきます。

<各機関の役割分担>
・情報通信研究機構: 研究の構想、GRAPEアルゴリズムを用いた解析の遂行、論文執筆
・慶應義塾大学: 研究の構想・議論、論文推敲
・東京理科大学: 解析結果と解釈に関する議論、論文推敲
・東京大学: 解析結果と解釈に関する議論、論文推敲

<論文情報>
掲載誌: Physical Review A
DOI: 10.1103/PhysRevA.106.022426
URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.022426
論文名: Numerical analysis of quantum circuits for state preparation and unitary operator synthesis
著者: Sahel Ashhab, Naoki Yamamoto, Fumiki Yoshihara, and Kouichi Semba
 

タイトルとURLをコピーしました